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ABSTRACT

We determine the Zariski-dense subgroups of Chevalley groups and their
twisted analogues over infinite algebraic extensions of finite fields. It turns
out that these are essentially forms of the same group (possibly becoming
twisted) over smaller infinite fields. It follows from our classification that
if G is a simple algebraic group over the algebraic closure of a finite
field, then a dense subgroup of G can never be maximal, and so the
maximal subgroups of G are necessarily closed. It follows that Seitz’s
determination of the closed maximal subgroups of G actually gives all

the maximal subgroups.

It also enables us to prove that if G is a simple Chevalley group or twisted
type over an infinite algebraic extension of a finite field, then in every
non-trivial permutation representation of G, every finite subgroup has a
regular orbit. It follows that every nou-trivial permutation module for G
over a field k is kG-faithful. This is relevant to a programme of studying

ideals in group rings of simple locally finite groups.
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1. Introduction

The first part of this paper consists of the determination of the Zariski-dense
subgroups of Chevalley groups and their twisted versions over infinite locally
finite fields. It turns out that these are essentially forms of the same group
(possibly becoming twisted) over smaller infinite fields. This result depends on
the classification of infinite simple periodic linear groups, and through that, on
the classification of finite simple groups. It will follow from our work that if K
is the algebraic closure of a finite field and G is a simple algebraic group over K,
then a dense subgroup of G can never be maximal, and so the maximal subgroups
of G are necessarily closed. Thus, Seitz’s determination of the closed maximal

subgroups of G [15, 16] actually gives all the maximal subgroups.

Let G be a simple Chevalley group of normal or twisted type over an infinite
subfield of K. We were led to study dense subgroups of G by a desire to show
that G has no proper “enormous” subgroups, as conjectured by the second author
in work on locally finite groups whose complex group rings have simple augmen-
tation ideals [22]. These subgroups, which we call confined subgroups in the
sequel, are a generalization of normal subgroups, and so their absence is a strong
form of simplicity. We show that G has no such subgroups. This tells us that
in every non-trivial permutation representation of G, every finite subgroup has a
regular orbit, and hence that if R is any commutative ring, then every non-zero
R-free RG-module induced from a proper subgroup of G is RG-faithful.

To state our results precisely, we need to introduce more notation. Let K be the
algebraic closure of the field of p elements, and let G be a simple algebraic group
over K (meaning that G is simple as algebraic group). We shall always think of
G in rather concrete terms as a matrix group constructed as in Steinberg’s notes
[17] from a finite dimensional simple Lie algebra over the complex field and a
finite-dimensional representation of it. Thus, G comes equipped with a group &
of field automorphisms and a set I" consisting of 1, together, if the conditions are
right, with certain canonical graph automorphisms constructed as in [17] or [6]
Let A = . By combining, in various ways, the elements of I' with powers of
the field automorphism corresponding to A — A, we obtain Frobenius maps in
A. If F is any such Frobenius map, let G be its fixed point group. Let N be

the set of all unbounded sequences

n=(n,ny,...)
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of natural numbers such that n; [nz | ..., and for n € N, let

oo
G =Ja.
i=1

Then the groups G(F, n)’ give us the various quasisimple Chevalley groups and
their twisted versions, of the same “untwisted type” as G, over the various infinite
subfields of K. A perfect subgroup of G of the form G(F, n)l, for some Frobenius
map F € A and n € N, will be said to be in standard position. In particular, G
itself is in standard position. See [12] and the next section for further discussion
of this. If G is of adjoint type, then G(F,n) is simple and it is known [1, 5, 10,
19] that every infinite periodic simple linear group is isomorphic to such a group.

As a K-linear group, G(F, n) has a Zariski topology, inherited from the Zariski
topology of the appropriate GL,(K). There is a certain subfield K of K naturally
associated with G(F,n), and G(F,n) is also K-linear, so it also has a K-Zariski
topology; however these topologies are identical [21, p. 73]. For definiteness, we
think of all Zariski topologies as associated with K. It is presumably common
knowledge that the groups G(F, n)l are all dense in G (see [11] for a proof). Now

we can state a converse.

THEOREM A: Let G be a perfect subgroup of G in standard position, and let
H be a subgroup of G. Then H is Zariski dense in G if and only if there exist
elements m,n € N, a Frobenius map F € A, and an automorphism ¢ of G(F,n)
such that G = G(F,n)', m | n and

G(F,m) < ¢(H) < Ng(G(F,m)).

If G has adjoint type, then Na(a—(F, m)l) = G(F,m), and in any case,
Na(@(F,m)’)/a(F, m) is isomorphic to a subgroup of the fundamental group
of G.

By the notation m | n, we understand that given 7, there exists j such that
m; | nj. Except in type D4, we may take ¢ to be the product of an inner and
a diagonal automorphism, and thus to be algebraic, since the field and graph
automorphisms of G normalize the groups G(F, m). In type D; we may need a
graph automorphism, but these are also algebraic. The “if ” part of the theorem
follows from this and the remarks preceding its statement.

Thus, for instance, the dense subgroups of PSL,(K), where K is infinite and

locally finite, are conjugates in PGL,(I{) of subgroups of PSL,(K) situated as
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follows: (i) between PSL,(k) and PGL,(k), where k is an infinite subfield of K,
and (ii) (if n > 3) between PSU,(k) and PGU,(k), where k is an infinite subfield
of K admitting an automorphism of order 2. Note that in order to mention the
dense unitary subgroups of PSL,(K) in the above notation, we must think of
PSL,(K) as specified by powers of a twisted Frobenius map; this explains the
rather stilted form of the statement of the theorem. We note that Steinberg
[17, Lemma 77] describes homomorphisms from one simple Chevalley group to
another with dense image, in the case when the field over which the target group

is defined is algebraically closed but not necessarily locally finite.

COROLLARY Al: Suppose that G has adjoint type. Let G = G(F, n)', let H
be a dense subgroup of G, and let m and ¢ be as in Theorem A. Let K be the
field over which G is defined and L be that over which G(F,m)’ is defined. Let
H, = Ng(H'). Then Hy/H is finite abelian, and one of the following happens.
(i) [K : L] < oo, and there exists an automorphism 7 of finite order of G such
that Ce(7) = H:.

(ii) [K : L] = oo, and there exists a chain of subgroups

H<Hy<:--

such that Uzl H; = G and H, = Cy,(7;) for some automorphism 1; of finite
order of H;.

It is more or less clear what we mean by the field over which G(F, n)l is defined,
but we shall spell it out in the next section.

When K = K, and H is proper, case (i) cannot arise, as K is not a finite
extension of any proper subfield, and so as previously stated, we obtain the

following,.
COROLLARY A2: Every maximal subgroup of G is closed.
The following curious result will be important to us in the sequel.

COROLLARY A3: Let G,H and H; be as in Corollary Al, with H # G, and
let X be any finite subset of G. Then there exists a subgroup D of G such that
< Hy,X >< D, and an embedding of D in some K -linear group under which Hy

corresponds to a closed subgroup.

As already stated, our interest in these matters arose from ideas of the second

author in investigating simple locally finite groups whose group rings over some
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field K have precisely three ideals. We call such groups K-augmentation sim-
ple, omitting explicit reference to the field if the context allows it. The question
of describing such group rings goes back to Kaplansky [13], and some examples

were given in [2]. The following striking result is now known.

THEOREM: IfG is an infinite simple periodic linear group, then G is C-augmenta-
tion simple.

The second author formulated a conjecture on values of irreducible characters
of finite groups of Lie type, from which this assertion would follow [22]. This has
now been established by Gluck (8], [9]. For more information on these matters,
see [22, 24].

Now annihilators of permutation modules form a natural family of ideals of a
group ring, and so in the present context, it is reasonable to look for conditions
on a subgroup H of a group G, under which the permutation module on the
cosets of H is faithful. One such condition arises from the following definition.

Definition: A subgroup H of a group G is called confined, if there exists a
finite subset F of G\ 1such that HYNF # Q for all g € G.

Confined subgroups are called enormous in [14]. Clearly H is confined if it
contains a non-trivial normal subgroup of G; also every non-trivial subgroup of a
finite group is confined. The trivial subgroup is not confined. Infinite locally finite
simple groups can have proper confined subgroups, and indeed infinite alternating
groups have them [14], but this seems to be the exception. The following easy
result, essentially in [14], explains their relevance.

If R is any commutative ring , H is a subgroup of a group G, and L is a
non-zero R-free RH-module such that the induced module LC has non-trivial
annihilator, then H is confined in G.

For a slightly stronger version, see Lemma 6.3.

It seems reasonable to conjecture that a simple locally finite group is augmen-
tation simple, say over the complex field, if and only if no proper subgroup is
confined. For linear groups, this is confirmed by our second main result, taking

into account the theorem above.

THEOREM B: If G is an infinite periodic simple linear group, then no proper
subgroup of G is confined.
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2. Preliminaries on Chevalley groups

This section is mostly devoted to discussing further the notation we are using for
these groups. We take for granted the standard facts, as found for example in [17]
or [6], and leave the verification of a number of routine statements below to the
reader. We have introduced the subsets ®,I' and A of Aut(G) in the Introduction,
and we write OP' (X) for the group generated by the p-elements of a group X. If
the Frobenius map F € A corresponds to a symmetry of order r of the Dynkin
diagram of G, then FT is a field automorphism of G, and we let K(F') denote the
fixed field of this field automorphism. By the first part of the next result, this
depends only on the group oY (@F). HG is twisted, then 'C?Fr is its “untwisted
version,” and K(F) = K(FT). (We use words like “automorphism” to refer to
the abstract group structure, otherwise using “polynomial automorphism” or
“algebraic automorphism”.)

The field assumptions in the second part of the next result are certainly
stronger than necessary. Since we are really interested in infinite groups, this
is not an important issue for us, and so we have not pursued it. Further, conju-

gacy in that result will be equality except in type Djy.

LEMMA 2.1: Let E and F be Frobenius maps in A.

() o7 ('(78) > O”'(EF) if and ouly if E is a power of F.

(i) If |K(F)| > 64 and OP'(—GF) is isomorphic to a subgroup of 01”(65), then
E conjugate in A to a power of F.

Proof: (i) This can easily be verified by using the form of the root subgroups in
the various cases.

(1) Let G = @E, and let G; be a subgroup of G isomorphic to 6F. Let U be a
Sylow p-subgroup of G, B = Ng(U), let H be a Hall p'-subgroup of B, and let
N = Ng(H). Let Uy, By, Hy and N; be similarly defined with respect to G,
and suppose without loss of generality that U; < U. Now U and U; have the
same nilpotency class, while two distinct G-conjugates of U intersect in a group

of smaller class [10, Lemmas 2.1 and 4.11] see also [11, Proof of Lemma 3.4], and
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so
B, £ B.

By Hall’s Theorem, we may assume that
H, < H.

Now K(E) is generated by elements whose multiplicative orders are orders of
elements of H, and similarly for K(F) {10, p.52], whence

(1) K(F) < K(E).

In particular, |K(E)| > 64. Arguing as in {10, p.53], we find that N nG; = Ny,
and so N;/H; is isomorphic to a subgroup of N/H. Now the fields are sufficiently
large to ensure that N/H and N,/H; are isomorphic to the Weyl groups of G
and EF respectively, so if W is the Weyl group of G, then WF is isomorphic to
a subgroup of W¥. Thus, if F acts non-trivially on the Dynkin diagram of G,
then so does E, and by considering the twisted Weyl groups of type D, we see
that in that case, E and F induce symmetries of the same order on the Dynkin
diagram. Replacing E by a conjugate in A, we may assume in that case that E
and F induce the same symmetry of the Dynkin diagram.

Now we must consider various cases. If E and F both act trivially on the
Dynkin diagram, then E = FJ" and F = F{', where Fj is the field automorphism
corresponding to A — AP. Then (1) gives n | m, and so E is a power of F. As is
noted above, if one of E and F acts non-trivially on the Dynkin diagram, then
F does. In that case, let the symmetry of the Dynkin diagram induced by F
have order r. Then F™ = F{" for some integer ¢t > 1, where Fp is as above, and
|K(F)| = p*". It follows from (1) that |K(E)| = p™" for some integer m > 1.
If E acts trivially on the Dynkin diagram, this means that E = F{"*". Then
Fm™r = F™" = E, as required.

There remains the case when both E and F' act non-trivially on the Dynkin
diagram. In the Suzuki or Ree group cases, both E and F are powers of a basic
graph automorphism, and (1) is sufficient to yield the result, as in the untwisted
case. Thus, we are reduced to the cases when G has type A, D, Eq. Then, by [10,
Theorem C'], we may take G; to be in standard position, that is, G; = _CED for
some Frobenius map D € A. By (1), K(D) = K(F). It follows that if |[K(F)| = g,
then |K(E)| = ¢, where (¢,r) = 1. Since E and F induce the same symmetry
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of the Dynkin diagram, we may write E = F¢o and F = Fo, where o is an
element of finite order in A; of course, o commutes with Fy. Then K(E) = K(E")
has order p™, and K(F) has order p™®, whence from the above, a = tb. Then
Ft = Fi** = Fgo'. Since (t,r) = 1, we have ¢* = o except perhaps in type Dy
when r = 3, and in that case, o' is conjugate to o under an element of A that
commutes with Fp. Thus, F is conjugate in A to E. |

We defined the notation m | n (m, n € N) in the Introduction. We define the
equivalence relation ~ on N by requiring that m ~ n if and only if m | n and

n | m. For an integer { > 1 and m € N, we define Im = (Im;,Im,,...). We put
G(Fyn) = U g™,

and we have of course
P
G(F,n) = U or'G@ ).
i=1
It is clear that we may extract a subsequence of n such that the maps F™ cor-
responding to that subsequence all determine the same symmetry of the Dynkin
diagram. We shall always assume that has been done. We may also assume that

ny =1 at will.

LEMMA 2.2: Let E and F be Frobenius maps in A, and let m,n € N. Then

(i) G(F, n)’ is isomorphic to a subgroup of G(E, m)" if and only if, for each i,
there exists j such that E™i is a power of F™,

(i) G(F,n) = G(F,m) if and only if n ~ m. In that case, G(F,n) = G(F, m).

Proof: (i) Assume that G(F, n)l is isomorphic to a subgroup of G(E, m)'. We
may without loss of generality consider only those ¢ such that [K(F")| > 64. For
each such 7, there exists j such that eal " s isomorphic to a subgroup of G

By Lemma 2.1, E™i is a power of F™.

The converse is clear, and (ii) follows. |

It follows that if G(F,n) = G(F,m), then |J2, K(F™) = Y%
denote this field by K(G(F, n)"), or often simply by K(n).

If K is any subfield of K and n is the size of the matrices constituting G, we
write Gk = G N GL,(K) for the group of K-rational points of G, and G(K) =
0" (Gx) = (Gx)' for the untwisted Chevalley group of the same type as G over

K(F™). We

=1
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K. Let n € N and K = K(G(F, n)’). If all F* are field automorphisms,then
Gk = G(F,n). If all F™ correspond to a symmetry of order 2 of the Dynkin
diagram, then Gx = G(F,2n). The map F™ induces an automorphism o; of
order 2 of @Fhi. These automorphisms are consistent under restriction, and
determine an automorphism of order 2 of G(F,2n), induced by an element of A,
whose unipotent fixed points generate G(F, n)'. The situation is similar if G has
type D4 and the symmetry of the Dynkin diagram corresponding to the F'™ has

order 3.

LEMMA 2.3: There exists an automorphism o € A such that Ca(a) = G(F,m)
and 0® = F'®.

Proof: If F is untwisted, then G(F,m) = Gk, where K = K(m). There is an
automorphism of K whose fixed field is K, and we take o to be the corresponding
field automorphism of G. If G(F, m) has type 2A;,2 D; or 2Es, let K = K(m)
and let 6 be an automorphism of K having as its fixed field the subfield Ky of
K such that [K : Ko] = 2. In order for these twisted groups to exist over K,
there must be such a subfield. The fixed field of 82 is K, as we see by considering
the restriction of 6 to a finite subfield F of K such that [K N F : Ko N F) = 2.
Let ®F = ®6 with é§ € T" and let o be the graph-field automorphism 66. Then
C@(a) < Ca(az) = Gk, and o induces on Gk the automorphism whose fixed
points form G(F, m). The same argument applies in type 3 Dy.

Consider now the case when G(F, m) has type 2B; or 2F}. (The same argument
applies in type 2G,. ) If K = K(m), then we have an automorphism 8 of K
satisfying 2602 = 1. We wish to extend 6 to an automorphism v of K such that
the fixed field of 2¢? is K. For this, consider the set F of finite subfields of K. If
F € F, then |K N F| = 2221 for some a. The restriction of # to K N F is given
by A A2° and if 8 is the automorphism of F' given by the same formula , then
2B? has fixed field K N F. Thus, if S(F) is the set of all automorphisms 8 of F
such that the fixed field of 262 (in F ) is K N F, then S(F) is a non-empty finite
set. If F;,F; € F and Fy > F3, then restriction induces a map S(F1) — S(F,).
Since any inverse system of non-empty finite sets has non-empty inverse limit, we
can pick out elements 8 € S(F) (F € F) that are consistent under restriction.
These determine an automorphism 1 of K such that 242 has fixed field K. The
automorphism ¢ = ¢y € A, where 7 is the non-trivial element of I, has 02 = 2¢?

(with a little abuse of notation ), so we easily find that its centralizer in G is
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G(F,m). 1

LEMMA 2.4: Let m,n € N. Then the following statements are equivalent.
(i) G(F,m) < G(F,n).

(ii) G(F,m) < G(F,n)".

(iii) G(F,m)’ is isomorphic to a subgroup of G(F,n).

(iv) K(m) < K(n).

(v) m|n.

Proof: We have trivially (v) = (i) = (ii) = (iii), and (iii) = (v) by Lemma
2.2. We show that (iv) & (v). We may assume that m; = 1. Let |K (6F)| =gq,
and let f be the order of the symmetry of the Dynkin dlagram correspondmg to
F, and hence to all F™:, Then |K(G )| = g™, and |K(G )| = ¢™ if F™
corresponds to the same twist as F, or ¢"/f otherwise. In the first case it is clear
that K(m) < K(n) if and only if m | n. In the second, note that (m;, f) = 1
and f | n; for all i and j, so that m; | n; if and only if m;f | n;. With this

observation, the equivalence is clear in this case also. |

LEMMA 2.5: Let myn € N, and let ¢ be the element of A as constructed in
Lemma 2.3, such that Ca(a) = G(F, m). Suppose that m | n, and let o5, be the
restriction of o to G(F,n). Then the following are equivalent.

(1) [K(n) : K(m)] < o0.

(ii) on has finite order.

(iii) n ~ Im for some l > 1.

Proof: We know by Lemma 2.4 that G(F,m) < G(F,n). First we show that
(i) & (ii). Let 7 = o7, where r is the order of ¢ in A/®. Then from the
construction, 7 is an element of ¢ whose fixed field is K(m). Also, the restriction
Tn of 7 to G(F, n) has finite order if and only if o, does. Now by considering the
action of 7, on suitable root subgroups, we see that 7% = 1 as an automorphism
of G(F,n) if and only if 7¥ = 1 as an automorphism of K(n). Thus, by Galois
theory, this happens for some k if and only if [K(n) : K(m)] < oo.

To see that (ii) < (iii), suppose first that the F™i and F™ both correspond to
the trivial symmetry of the Dynkin diagram, and m; = 1. Then if Fq = K (6‘”),
we have K(m) = U2, Fgm: and K(n) = UjZ, Fyn;. The statement n ~ Im

amounts to saying that for each ¢, there exists j such that Fyn: < thm, and
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F,im; <Fgn;. These statements are equivalent to saying that K(n) = |Ji2| Fyim;,
and clearly [ J{2; Fim; is a finite extension of (72, Fgm:.

The other cases are similar. |

LEMMA 2.6: Let m,n € N, and suppose that m | n. Let o be the element of A
given by Lemma 2.3, such that Cg(¢) = G(F,m). Suppose that
[K(n) : K(m)] = co. Then there exists r € N such that

G(F,m) < G(F,rym) < G(F,r,m) < ---

and -
|J G(F,rjm) = G(F,n).
j=1
Proof: For fixed j, let n;; be the least common multiple of m; and n; and z;;

their greatest common divisor. Then

zij | Tigri | .o Iy,

and so the sequence (z;;) is eventually constant and equal say to hj. Let
kj =nj/h;. Then, for all but finitely many values of ,n;; = m;k;. As nj | nji1,
we have n;j | nij41, and so kj | kj41. Also, k;m | n. Suppose if possible that
there exists 7 such that k;m ~ k;yym ~ .... Then since n, | k,m,, for some ¢,
we find that if s > i, then n, | kim; for some j,, whence n ~ k;m. By Lemma
2.5, we find that [K(n) : K(m)] < oo, contrary to assumption.

Thus, there is a subsequence (rq,72,...) of (k1,ks,...) such that riy;m does

not divide r;m for all i. By Lemmas 2.2 and 2.4, we obtain the desired conclusion.

3. Some representation theory

We begin with some facts about tensor decompositions of modules. Some or all
of this may be well known, but since we have been unable to find references, we
give a detailed discussion. We go on to study the irreducible K-representations
of the groups G(F,n), where G is simply connected, and show, among other
things, that they extend to G. In many cases this follows from work of Borel and
Tits [3], see also [17, Theorem 42], but their results do not seem to cover the

Suzuki and Ree groups, for example, which are important for us. The proof is
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mostly a matter of putting together Steinberg’s results on extending irreducible

. =F —
representations from G to G.

Definition: Let K be afield, G a group and V a KG-module. Then V is tensor-
decomposable, if there exist KG-modules U and W, both of dimension at least
2, such that V = U @ W. Otherwise, V is tensor-indecomposable.

Suppose that G is an algebraic group, V affords a rational representation, and
we are told that V is tensor-decomposable as above. We wish to investigate
whether U and W can be taken to afford rational representations. To discuss
this, we need to set up some notation. Let K be infinite, and from here until
the end of Lemma 3.3, let G, = GL,(K). We index the rows and columns of
elements of G, by pairs (i,7) (1 < i < m,1 < j < n), ordered in some way
which will be unimportant to us. We have the map 7 : G X G — Gpun which
sends a pair (g,h) to the matrix whose ((2,7),(k,[)) entry is gixhji. We write
7(g9,h) = g ® h, “the” Kronecker product of g and h,and T =im7 = G @ G-
Then 7 is a polynomial homomorphismm whose kernel consists of the elements
MADH)(0#X€K),andso g®h =g ' ®h' if and only if g' = A\g and ' = A™1h
for some non-zero A € K. Hence, if PG, denotes PGL,,(K), we have well defined
projections ¢y, : T — PGy, and ¢, : T — PG,, sending g ® h to the images of
g and h respectively.

Now PG,, is usually viewed as a matrix group by considering the conjugation
action p of Gy, on Ap, = M,,(K). We have p(g)(a) = gag™'. The space Am
has the usual matrix units e;; as basis, and with respect to this basis, linear
transformations of A,, are represented by matrices (u;jk1). The matrix of p(g)

has (ig, kl)-entry

(1) (det 9) ™ gidinj

where §;i is the cofactor of gji in g. If 7, : G X G — PG, sends (g, h) to the
matrix given by (1), then

2) $mT = Tm,

and similarly with the second component. The maps 7,7, are rational homo-

morphisms.

LEMMA 3.1: ¢,, is a rational homomorphism.

Proof: 'The matrix 7(g, h) has entries gixhji, where the suffices vary indepen-

dently. Consequently, any expression gk, *** gi., Pj 1, * - Bj k., the product of
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two monomials of the same degree in the entries of ¢ and h, is a monomial in the

entries of ¢ ® h. Hence the expression
(det ¢)" D gpigi;(det h)™

is a polynomial in the entries of ¢ ® h. For the same reason, so is (det g)"(det h)™.
Dividing one by the other shows us that (1) is a rational function of the entries

of g ® h, as required. |

LEMMA 3.2: Continuing with the above notation, let G be a Chevalley group
and o : G — G, B : G — G, be representations. Suppose that a @ f: G —
T =Gm ® Gn < Gy Is polynomial. Then « and f are polynomial.

We are grateful to S. Donkin for showing us another proof of this result. Con-
ceivably it may be true more generally. Taking G = K* and a to be any automor-
phism of K, we have that @ ® a~! is polynomial, while « need not be in general.
It may be that for more general G, there exists a homomorphism A : G — K*

such that A and A\~!f are rational.

Proof: We may assume that G is simply connected. Let § = a ® 8. By Lemma
3.1, ¢,.0 : G — PG,, is a rational map (and so in fact polynomial). Let v, :
Gm — PG, be the natural projection (which sends the matrix (¢;;) to the matrix

with entries (1)). By (2), we have

d)m 6(.(/) = Vm ﬂ(g)

if ¢ € G, and the left hand side is a polynomial homomorphism. Now every
polynomial projective representation of G lifts to an ordinary polynomial repre-
sentation, since G is simply connected [17, p. 91}, and so there exists a polynomial
homomorphism o' : G — G, such that v, a(g) = vma'(g) if ¢ € G. Then a and
o' differ by a one dimensional representation of G, and this must be trivial as G
is perfect.

One can also argue that v, induces a polynomial isomorphisim on each unipo-
tent subgroup of G, from which it follows that the restriction of & to each root
subgroup of G is polynomial, and hence, argning for example as in [17, Theorem
30, p.158], that « itself is polynomial. The upshot is that «, and similarly 3, is

polynomial. |
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LEMMA 3.3: Continuing further with the same notation, let G be a simply con-
nected Chevalley group and p : G — G.n be a representation. Suppose that
there exists u € Gy, such that p(G)* < T = Gm @ Gn. Then there exist repre-
sentations a : G = G,, and B : G — G, such that p is equivalent to a @ 8. If p

is polynomial, so are o and f3.

Proof: Without loss of generality, u = 1. Since G is simply connected, there
exist representations @ : G = G,, and 8 : G — G, such that ¢pnp = vma and
dap = vaB. If p(g) is written as z ® y in any way, with 2 € G,y € Gy, then
a(g) = pz and B(g) = p'y for some scalars y and p', and so

a(g) ® B(g) = un'p(9) = Mg)e(g)

for some scalar A(g). Then X is a one-dimensional representation of G, and so is

trivial as G is perfect. The final statement follows from Lemma 3.2. |

Next we show that for locally finite groups, tensor decomposability is a local
property.
LEMMA 3.4: Let G be a locally finite group, K be a field, and V' be a finite-

dimensional, irreducible , tensor indecomposable K G-module. Then there exists
a finite subgroup F of G such that the restriction Vr of V to F is irreducible and

tensor indecomposable.

Proof: We may clearly assume that V is faithful for G, in which case G is
countable [21, 9.5]. Let A be the subalgebra of EndxV = E spanned by the
images of the elements of G. Then A can be spanned by the images of the elements
of some finite subgroup G; of G. It follows that V' is irreducible for G, and hence
for any subgroup of G containing G;. Further, if E; = Endkg, V, then

3) E; = EndgxV

for any subgroup X of G containing G;.
Let n = dim V, and assume that there is no finite subgroup F of G, containing
G\, such that Vp is tensor indecomposable. Then we can write G = Uz, Gi,

where

(4) Gi <Gy <
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is a tower of finite subgroups of G. For each i, there exist KG;-modules U;, W;,
of dimension > 1, such that V' is KG;-isomorphic to U; ® W;. We can clearly
choose integers r, s such that, for infinitely many values of ¢, we have dimU; = r
and dim W; = s. Deleting from (4) the terms for which these equalities do not
hold, and renumbering the rest, we may assume that they hold for all i.

Let p : G = GL,(K) be a matrix representation afforded by V. Then for
¢ =1,2,..., there exists g; € GL,(K) and representations ¢; : G; — GL.(K),
7i : G; = GL,(K) such that

(5) p(9)% = oi(g) ® Tilg) (g € Gy),

where the right-hand side is a Kronecker product of matrices. Since p is irre-
ducible on Gy, so are o; and 7;. As G has only finitely many irreducible repre-
sentations over K (up to equivalence ), we may choose irreducible representations
a and S of G; such that, for infinitely many values of i, o; restricts on G to a
representation equivalent to a and 7; to one equivalent to 3. After deleting terms
of (4) and renumbering as before, we may assume that all o; and 7; restrict in
this way. We may also take g; = 1 in (5).

We now have

(6) plg) = a(g) @ B(g) (g € Gh).

Further, if i > 1, then there exist elements u; € GL.(K) and v; € GL,(K) such
that oi(g) = a(g)* and 7i(g) = B(g)¥ if ¢ € G;. Putting w; = u; ® v;, we have
from (5) and (6) that

p(9)7 = alg) ® Blg) = p(g),

if g € G. This tells us that g;w]! € E;. By (3), giw;' € Endkg,V, which allows
us to replace g; by w; in (5). Then, conjugating by w; ' and using a?‘_l instead
of o; and 7':"'_l instead of 7;, we may assume that ¢; = 1 and ¢; and 7; restrict
on G to « and J respectively.

If j > 4, the new version of (5) shows that ¢; ® 7; and o; ® 1; agree on G;.
It follows that o; |G, = Aijo; for some one-dimensional representation Aij of Gj.
Let S; be the set of all representations of G; of the form Ag; for some linear
representation A of G;. Then the above shows that restriction maps S; into S; if

J 2 1. The sets S;, together with restriction maps, form an inverse system of finite
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non-empty sets, and as is well known, such a system has non-empty inverse limit.
Thus, we can choose elements ¢; € S; (: = 1,2,...), consistent under restriction.
Then there exists a representation ¢ : G — GL.(K) such that ¢ |g,= ¢; for
1=1,2,... Since ¢; € S;, there exists a representation v; : G; - GL,(K) such
that p(g) = ¢i(9) ® ¥i(g) if ¢ € Gi. The argument just used shows that the
1); are consistent under restriction, and so they are common restrictions of a
representation ¢ : G — GL,(K). Then clearly p = ¢ ® ¢. This contradicts the

assumed tensor indecomposability of p and proves the lemma. |

The next result is the main one of this section. Recall that the infinitesimally
irreducible representations of G are those polynomial representations which in-
duce irreducible representations of the Lie algebra. Equivalently, they are those
whose highest weight A satisfies 0 << A, a; > < p—1, where the «a; form a system
of fundamental roots of G [4].

THEOREM 3.5: Let G be simply connected, and F be a Frobenius map in A. Let
G = G(F,n), and let p : G — GL,(K) be an irreducible representation. Then
there exist infinitesimally irreducible representations o; : G — GL,(K) and field
automorphisms ¢; € ® (1 <7 < r) such that p is equivalent to the restriction to
Gofo,1 ®...8 0rdy.

Proof: Let G; = EFM , so that G = U:1 G;. Now we may write p as a tensor
product of tensor indecomposable representations, and thus assume that p itself
is tensor indecomposable (and absolutely irreducible). By Lemma 3.2, p; = pg;
is absolutely irreducible and tensor indecomposable for sufficiently large ¢, and
we may assume that this holds for all i. By Steinberg’s Theorem [17, Theorem
43, p.217] pi can be extended to an irreducible polynomial representation p;
of G. Clearly p; is tensor indecomposable, and so by Steinberg’s tensor product
theorem, p; is equivalent to a representation 6;Fy"*, where 6; is an infinitesimally
irreducible representation of G and Fp is the Frobenius map corresponding to the
p-th power map on K. The set of infinitesimally irreducible representations of G
is finite, so some such representation 8 occurs infinitely often among the 6;, and
by passing to a subsequence and renumbering, we may assume that §; = ¢ for
all ¢. In a similar way we may assume that the maps Fj*' all agree on G, and
replacing p by a conjugate under GL,(K), that p and 8Fy"" agree on Gj.
Let ¢ > 1. Then there exists g; € GL,(XK) such that

97'7:(9)9i = 8F™ (9)



Vol. 82, 1993 SIMPLE PERIODIC LINEAR GROUPS 315

for all ¢ € G. Now restricting to Gy via G;, we see that 7;(g) = p(g) for all

g € G,. By Schur’s Lemma, ¢; is a scalar matrix, so in fact

(7 p(g) = pi(g) = 0F;" (g)

for all g € G;.
We may assume that 8 is not the trivial representation of G, in which case its

kernel is contained in the centre Z of G. From (7) we obtain
(8) Fy"*'(9) = Fg"(g) (mod Z)

if ¢ € G;. Since G; is perfect, we can replace this congruence by equality. Now
let K; be the field over which G; is defined, that is, K (G ) in the notation
of the last section. By applying the improved version of (8) as g runs over a

Mit1

suitable root subgroup of G;, we see that as automorphisms of K, F, and

F;™ have the same restriction to K;. Therefore there exists a field automorphism
¢ € ® that induces Fj** on Gj, and we finally obtain from (7) that p = 84. This

completes the proof.

COROLLARY 3.6: With the hypotheses of the previous theorem, every irreducible
K -representation of G(F,n) extends to G.

4. Proof of Theorem A: the case G = G.

Before beginning this proof, we need some straightforward and probably well
known facts about periodic linear groups. If G is such a group, we write F(G)
for the product of its normal nilpotent subgroups, and E(G) for the group gen-
erated by its quasisimple subnormal subgroups. In fact F(G) is nilpotent, by
a result of Gruenberg [21, 8.2]. It is well known and easy to see that any two
quasisimple subnormal subgroups of a group commute elementwise, and so E(G)
is the product of a finite number of quasisimple normal subgroups of itself, and
any two of them commmute elementwise. We put F*(G) = F(G)E(G), the

generalized Fitting subgroup of G, as in the finite case.

LEMMA 4.1: Let G be a periodic linear group. Then
(1) Every non-trivial quotient of G contains either a non-trivial abelian charac-

teristic subgroup or a non-abelian simple subnormal subgroup.

(i) F*(G) 2 Co(F*(G))-
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Proof: (i) Let H be such a quotient. By a result of Kargapolov [21, 9.30], there
is a bound k to the number of non-abelian factors in any (subnormal) series of
H. Now each finite soluble section of H is covered by a finite soluble subgroup
of G. For such a section is isomorphic to a quotient A/B, where A and B are
subgroups of G. We choose a finite subgroup X of G of minimal order such that
A = BX. Then XN B is in the Frattini subgroup of X and so is nilpotent, whence
we see that X is soluble, as required. From this, a theorem of Zassenhaus [21,
3.7] gives us an upper bound d to the derived lengths of soluble sections of H.
Suppose now that H has no non-trivial characteristic abelian subgroup. Since
H is locally finite, the join of its soluble subnormal subgroups is locally soluble,
and therefore soluble, since we have a bound on the derived lengths of soluble
sections of H. Therefore H has no non-trivial soluble subnormal subgroups. Now

put H = H;, and having obtained
H=H,v>Hy»---v H, #1,

put K = HY. We have K # 1, and note that K = K'. If K is simple we stop.
Otherwise we take any non-trivial proper normal subgroup of K as Hn41. Then
K/Hp41 is non-abelian, as K = K'. Since we have a bound on the number of
non-abelian factors in a series of H, this process must lead after a finite number
of steps to a non-abelian simple subnormal subgroup of H.

(ii) This now follows as in the finite case. Let C = Cc(F*(G)), and suppose
that C £ F = F*(G). Then C/C N F is non-trivial, and by (i), it contains a
non-trivial subgroup D/C N F that is either abelian and characteristic, or non-
abelian simple subnormal. In the first case, D is nilpotent and normal in G, and
in the second, D = D'(C N F) and D' is quasisimple. In either case we find that
D < F, a contradiction. |

LEMMA 4.2: Let n € N. If G has adjoint type, then N@(E(F, n)') = G(F,n) and
G(F,n)/G(F, n)’ is a finite abelian group isomorphic to a subgroup of the fun-
damental group of G. In general, if G,q4 is the adjoint group corresponding to G,
then the natural map of G onto G a4 maps NE(C'-(F, n)')/ﬁ(F, n)' isomorphically
onto Gga( Fyn)/Gaa(Fyn).

Proof: Let G = G(F, n)’, N = N—G-(G), and let Gq4, Nog be the correspond-
ing groups formed from Gad. The natural map 7 : G — G4 maps G onto Gad
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[18, 12.6] and has central kernel Z. Therefore 77}(Gaa) = GZ, and 771 (Ngq) =
N@(GZ ) = N. Therefore # maps N onto N4 and G onto G4, giving an isomor-
phism N/G = Nga/Goa.

Therefore, we now assume that G has adjoint type. Let B be the standard
Borel subgroup of G, T the standard maximal torus, and U the unipotent radical
of B. Alsolet B=BnNG, T=TNG,and U =UNG. Then U is a Sylow
p-subgroup of G, B = Ng(U), and B = UT. Since the Sylow p-subgroups of
G are conjugate [21, 9.10], the Frattini argument gives N = GNy(U). Write
M = Ny(U). Then M NG = B aM. Now T is a Hall p'-subgroup of B and
the Hall p’-subgroups of B are conjugate [21, 9.22], and so a second Frattini
argument gives M = BL, where L = Ny(T'). Hence N = GL.

Now U and U have the same nilpotency class, while any two distinct conjugates
of U intersect in a group of smaller class [10]. It follows that NE(U) < NE(.IT),
and so L < B. Hence L < N—B-(T) = TC’U(T). It is well known that CU(T) =1
(and follows for example from [10, 2.2]), and so N = GNT-(G). The elements of
T have the form h(x), where x is any K-valued character of the root lattice P.
Let K = K(n). Suppose that G is untwisted. Checking the conjugation action
on root subgroups, we see that the condition for A(x) to normalize G is that
the values of x lie in K. Thus in this case, N = GTx = Gg. The last equality
follows from the Bruhat decomposition. The group T consists of all K-valued
characters of P that extend to K-valued characters of the full weight lattice Q.
Thus, Tx /T is isomorphic to a group of K-valued characters of the fundamental
group @/P. In the other cases, G = CC;K (o) for some twisting automorphism o.
When there are roots of different lengths, we can use [17, Lemma 64, p.183] to
see that N = G. In the other cases, x must be self-conjugate in the sense of [6,
p-238] and much the same argument as in the untwisted case applies. ]

Proof of Theorem A: the case G = G. Let G, be the universal cover of G, and
7 : Gyc — G be the canonical projection. Then 7~1(H) is dense in G,., since 7
maps closed subgroups to closed subgroups. Combining this with Lemma 4.2, we
see that it suffices to prove the result in the simply connected case. Let X denote
the Zariski closure of a subset X of G, let FF = F(H), and E = E(H). We refer
to {21, Chapter 5] for basic facts about the Zariski topology. If J is any normal
nilpotent subgroup of H, then J¢ is nilpotent and normal in H° = G. Hence J°
is contained in the centre Z of G, and so in particular, F' < Z. Clearly H £ Z, so
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by Lemma 4.1, E # 1. Let E = E, ... E,, where the E; are pairwise commuting
quasisimple subnormal subgroups of H, and r > 1. Let M = Ny(E;). Since the
E; are the unique quasisimple subnormal subgroups of H, they are permuted by
conjugation in H, so |H : M| < r. Let H = Ms; U---U Ms,, where the s; are
elements of H and ¢t < r. Then G = H® = M®s; U--- U M®s,, so M* is a closed
subgroup of finite index in G. Since G is connected, M° = G. Since E{ a M¢,
It follows that Ef = G. But E,; centralizes E; ... E,, and since centralizers are
closed, so does E{ = G. Therefore r = 1, which tells us that E; a H. We claim
now that it suffices to deal with the case H = E,. For having done so, we shall
know in the general case that E; is conjugate under Aut G to some G(F, n)', and
so H will be conjugate to a subgroup of N—é(ﬁ(F, n)’) containing G(F, n)’.
Thus, we now assume that H is quasisimple. By the classification of simple
periodic linear groups, we may identify H/H N Z with a group of Lie type. That
is, there exist a simple algebraic group H,q4 of adjoint type, a Frobenius map

D on H,q4, an element n € N, and an isomorphism
9) a:Hu(D,n) - H/HNZ.

Let H,. be the universal cover of Hgaq4, with canonical projection 7 : H,c — Haa.
Then D lifts to a Frobenius map E on H,, and 7 : H,(E,n) - H,iD,n) isa
universal central extension (see {17], or use a local argument based on the finite

case if twisting is present). Hence ar lifts to an epimorphism
(10) B:H,(E,n)—H

with central kernel.
Now let 4 : G — GL,,(K) be a non-trivial irreducible polynomial representa-
tion of minimal degree. Since H is dense in G, 7 is irreducible on H. We now

claim that, for the same reason,
(11) vy is tensor indecomposable.

For if not, then there exist mj,ms > 1 such that mym; = m and y(H) is
conjugate in GL,,(K) to a subgroup of GL,,,(K) ® GL,(K). Without loss of
generality, Y(H) < GLyu,(K) ® GLu,(K) = T. Since T is closed in GLn(K)
and H is dense in G, it follows that v(G) < T. But then, by Lemma 3.3, v
is equivalent to the tensor product of polynomial representations of degrees m;

and m;, contradicting the minimality of its degree. This gives us (11). One
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could argue alternatively at this point that any irreducible representation of G
is equivalent to a tensor product of polynomial representations twisted by field
automorphisms, according to [3], and so obtain a contradiction to the minimality
of the degree of v; however the present argument is more elementary.

Now 78 : H,o(E,n) = GL,,(K) is an irreducible representation, and by (11),
it is tensor indecomposable. By Theorem 3.5, there exists an irreducible poly-
nomial (in fact, infinitesimally irreducible) representation o of H,. and a field
automorphism ¢ of H, such that ¥4 and g1 are equivalent representations of

H,.(E,n). We replace v by a suitable conjugate to obtain
(12) 7:3(3) = 01/)(.’1:) if z€ Fsc(E’ l’l).

The image of o contains y(H), which is dense in ¥(G), and since o(H ,.) is closed
in GLm(K), we have o(H ) > 7(G). But also H,c(E, n)is dense in H,., and since
v preserves H,:(E,n), o maps it to y(H) < 7(G). It follows that o(H,.) = v(G).

We now see that o induces an isomorphism of abstract groups
Gad = H,aq. From (17, Theorem 31,p.167] we see that Goq and H,q are iso-
morphic as algebraic groups, except if K has characteristic 2 and one of G44 has
type By, the other Ci. Now H,q was chosen simply as a simple algebraic group
of adjoint type containing a copy of H/H N Z of the form H,q4(D,n), so except
perhaps in the excluded case, we may now take H = G. But even in that case, we
can do so, since Bi(K) = Ci(K) for all fields of characteristic 2, so G,4 contains
a suitable copy of H if H has this type, and similarly if H happens to be a Suzuki
group.

We now have surjective homomorphisms 7,7 : G — 7(G) such that o(G(E, n))
= y(H). From this point we are only interested in group homomorphisms and
automorphisms, and need not worry about their polynomial nature. Let » :
Y(G) — Geaa be a surjective homomorphism, and let A = vo, i = vvy. Then
A, #t : G — Gaq are surjective homomorphisms with the same kernel Y, the
centre of G. and A(G(E, n)) = u(H). We can think of A : G — Gaq as a universal
central extension and so obtain an automorphism ¢ of G such that u¢ = A. Then
we have ¢(G(E,n))Y = HY, and taking derived groups gives ¢(G(E,n)) = H.

This completes the proof in the algebraically closed case. ]

5. Completion of proof of Theorem A

We begin with an extension of a result well known for finite groups.
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LEMMA 5.1: Let G be a locally finite group, K be a field, and p, s : G — GL,(K)
be representations. Suppose that L is an extension field of K, and that p and ¢
are equivalent over L. Then they are equivalent over K.

Proof: For each finite F < G, let Efp be the centralizer of p(F) in M,(K).
Then EF is a K-algebra, and if F] is a finite subgroup of G containing F, then
Er > Epr,. Thus, dimension considerations tell us that we may choose a finite
subgroup F of G such that Ep = Ep, whenever F; > F and Fj is finite. By the
finite case of the result we are trying to prove, [7, p.200] there exists ¢ € GL,(K)
such that

(13) 9 ' p(z)g = o(z)

whenever z € F.
Let D be a finite subgroup of G containing F. By the same token, there exists
h € GLn(K) such that
R p(2)h = o(z)

for all z € D. Restricting this to F and comparing with (13), we find that
hg=! € Er = Ep. It follows that (13) holds for all z € D, and hence for all
z € G, as required. ]

We also require the following facts about irreducible K-representations of G.
They are well known, though it seems difficult to find adequate documentation.
A polynomial representation o of G is defined over F,, if the entries of the

matrices o(g) (¢ € G) are polynomials with coefficients in F, in the entries of g.

LEMMA 5.2: Let o : G = GL,(K) be an irreducible polynomial representation.
Then

(i) o is equivalent to a representation defined over F,.

(ii) If K is any subfield of K, and o is injective and defined over F,, then o(Gk) =
0(G)k, where the suffix K denotes the group of K -rational points.

(iii) If G is simple and o is defined over Fy, then o((Gk)') = (¢(G)k)'.

Proof: (i) See [20, p.679).

(ii) If 8 is any automorphism of K, and we think of § as acting componentwise
on matrices, then clearly 6o(g) = 06(g) for any g € G. Since o is injective, it
follows that g is f-invariant if and only if o(g) is. Applying this as 6 varies over
the Galois group of K over K, we find that g is K-rational if and only if o(g) is.
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(ili) We may clearly take o to be non-trivial. Let Z be its kernel, let H = G/Z,
and let 7 be the canonical map G — H. Then 0 = 77, where 7 : H — GLn(K) is
an irreducible polynomial representation, also defined over F,. Now 7 is injective,
and so, using (ii) and [18, 12.6], we find

o((Gk)') = rn((@k)) = r((Hk)') = (r(H)x)' = (o(C)k)'-
Conclusion of proof of Theorem A: Let G = G(E,k)', where E is a Frobenius
map in A and k € N. We have a dense subgroup H of G, and have to show that
it is conjugate in Aut G to one of standard type. As in the case G = G, we may
assume that G is simply connected and H is quasisimple. Since G is dense in G,
so is H, and since the result is known when G = G, we find that H is conjugate
in Aut G to some G(F,m) = G;. By Lemma 2.2, G = G(F,n), for some n € N
such that m | n. Let K = K(n) and K7 = K(m). By Lemma 2.4,

(14) K, <K.
Hence
(15) H<G<Gg and G, <Gkg.

Note that Gx = G(K) here as G is simply connected. Now we repeat the argu-
ment used when G = G. Let #: G; — H be an isomorphism of groups, which
we already know exists, and let v : G — GL,,,(R) be a non-trivial irreducible
polynomial representation of minimal degree. By Lemma 5.2, we may take v to
be defined over F,, and we do so. As before, we have the irreducible representa-
tion 4B of Gy; it is tensor indecomposable and so there exist an infinitesimally
irreducible representation o of G and a field automorphism 1 of G such that
vB and o1 are equivalent over K, as representations of G;. Since 4 and o are
both defined over Fp, (15) tells us that both of these are K-representations. By
Lemma 5.1, there exists g € GL,,,(K) such that

g7'B(z)g = aip(2)
for all z € G;. Let § be the representation = — g~'y(z)g of G. Then
(16) 6f(z) = orp(z)

for all z € G,. As when G = G, , using the density of H and G4 in G, we deduce
that §(G) = o(G). Using Lemma 5.2(iii) and the fact that g is K-rational, we
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have
§Gx) =97'1(Gk)g = (a7 (@)9)k) = (8(G)k)' = (¢(@)x)' = o(Gk),

That is, § and ¢ both map G onto the same group M. Also, §(H) = o(Gh).
Let L be the adjoint Chevalley group over K of the same type as Gk, and let
v : M — L be an epimorphism. Let A\ = vo and p = vé. Then MG,) = pu(H),
and as in the algebraically closed case, we find that there is an automorphism of
Gk mapping Gy to H. Thus, the proof is complete if G = Gk, that is, if G is
untwisted.

Suppose now that G is twisted, so that all the F™¢ induce the same non-trivial
symmetry of the Dynkin diagram. Since m | n, we find that for infinitely many
i, F™i is a power of some F™i | which means that G is twisted in the same way
as G.

We are now in virtually the same situation as that considered in [10, §3].
Namely, G is a quasisimple twisted group of Lie type and H is a subgroup of
it of the same type. The differences are that the fields involved are infinite and
the groups need not be of adjoint type. However, precisely the same arguments
apply and complete the proof. 1

Proof of Corollary A1: By Theorem A, we may assume that
G(F,m) <H <G(F,m)nG,

where m € N and m | n. Note that now, by Lemma 4.2, H; = G(F,m)NG.
Let o be the element of A given by Lemma 2.3, such that Cg(a) = G(F,m)
and &0 = ®F. Since < ®,0 > is an abelian group, o commutes with F and
so leaves G invariant. In case (i) we take 7 to be the restriction of ¢ to G and
use Lemma 2.5. In case (ii), construct r € N as in Lemma 2.6, with r, = 1.
Put H; = @-(F, rim) N G, and let 7; be the restriction of ¢ to H;. We have
H! = G(F,rim)' and so H{ < H!,, by Lemma 2.2. Certainly, therefore, H; <
Hiy1. By Lemma 2.5, 7; has finite order. [ ]

Proof of Corollary A3: We deduce this from Corollary Al by applying the
following lemma. In case (i) of that Corollary, we take D = G. In case (ii), we
choose ¢ such that < H, X >< H; and take D = H;. [ |



Vol. 82, 1993 SIMPLE PERIODIC LINEAR GROUPS 323

LEMMA 5.3: Let G £ GL,(K), where K is any field, and suppose that ¢ is an
automorphism of finite order of G. Then G can be embedded in some GL,(K)
in such a way that in this new embedding, Cg(¢) is Zariski-closed in G.

Proof: Let G* be the semidirect product G < ¢ > Since |G* : G| < o0, we
can realize G* as a subgroup of some GL,,(K), simply by inducing up the given
representaton of G. Since centralizers in linear groups are Zariski closed, the

result follows. [ |

6. Confined subgroups of simple linear groups

We first collect together some basic facts about confined subgroups, and then use

them to prove Theorem B.

LEMMA 6.1: Let H be a subgroup of a group G.
(i) If H £ K £ G and H is confined in G, then K is confined in G.
(ii) Let Q be the left G-set G/H. Then H is confined in G if and only if there is

a finite subset X of G~ 1 such that every point of Q1 is fixed by some member of
X.

Proof: These are both easy to prove. We thank D. Evans for pointing out (ii)
to us. |

LEMM 6.2: Let H be a subgroup of the infinite locally finite group G. The
following three conditions are equivalent.

(i) H is not confined in G.

(ii) Every finite subgroup of G has a regular orbit on @ = G/H.

(iii) Every finite subgroup of G has an infinite number of regular orbits on ) =

G/H.

Proof: If F < G, then the F-orbit gH is regular if and only if FNgHg™! =1, so
(1) and (ii) are equivalent. Trivially, (iii) implies (ii). To see the converse, suppose
that F is a finite subgroup of G having a finite number n of regular orbits on (2.
Since G is infinite, we may choose a finite subgroup E of G containing F', such
that |E : F| > n. By (ii), E has a regular orbit on §, and this breaks up into
|E : F| regular F-orbits, a contradiction. 1
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The following is a slightly stronger form of a statement made near the end of
the Introduction.

LEMMA 6.3: Let H be a subgroup of the infinite locally finite group G. Of the
following statements, each implies the next.

(i) H is not confined in G.

(ii) Each finite subgroup of G has infinitely many regular orbits on Q@ = G/H.
(ii) If R is any commutative ring, U is any non-zero R-free RH-module, and F
is any finite subgroup of G, then U® = RG ®gy U contains a free RF-direct
summand of infinite rank.

(iv) F U is any non-zero RH-module, then U is a faithful RG-module.

Proof: Lemma 5.3 tells us that (i) implies (ii). We can quote Mackey’s Theorem
to see that (ii) implies (iii), or argue directly as follows. We split up Q into F-
orbits. If gH belongs to a regular F-orbit, then the elements fg (f € F) form
a set of coset representatives for the cosets in that orbit, and @serfg @ U is
a non-zero free RF-module. The direct sum of these over all regular F-orbits
is an RF-direct summand of €. Since any non-zero ideal of RG has non-zero
intersection with RF, for some finite F < G, it is clear that (iii) implies (iv).

The next lemma is crucial in the proof of Theorem B. If H is a subgroup of a
group G, we write
Hg = NgecH’

for the core of H in G.

LEMMA 6.4: Let G be a connected linear group, and H be a closed subgroup of
G. Then H is confined in G if and only if Hg # 1.

Proof: Of course, if Hg # 1, then H is confined in G, whether or not G is
linear. For the converse, we will obtain a contradiction from the supposition
that H is confined in G but Hg = 1. Since H is confined, there exists a finite
subset F' of G\ 1 such that HY N F # @ for all g € G. For each z € F, the map
é: : g — gzg~! is a continuous map of G into itself, and so ¢ (H) is closed.
Since z ¢ Hg, it follows that ¢7'(H) # G. Since G is connected, we deduce that
User¢71(H) # G. Choosing g € G\ U,epd;'(H), we have gzg™! ¢ H for all
z € F, whence F'N H? = (. This is the contradiction sought. ]

Now we are ready to prove Theorem B.
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Proof of Theorem B: We have an infinite simple periodic linear group G and a
proper subgroup H of it, and have to prove that H is not confined in G. Suppose
that it is . Let C be the closure of H in G. Then by Lemma 6.1, C is confined
in G. By Lemma 6.4, C has non-trivial core, and since G is simple, C = G. In
other words, H is dense in G.

By the classification of infinite simple periodic linear groups referred to in the
Introduction , we can identify G with a group G(F, n)', where G is a simple
algebraic group of adjoint type over K, F is a Frobenius map on G, and n € N.
By Theorem A, M = H' is simple and if H; = Ng(M), then Hy/H is finite
abelian. Since H is confined, there exists a finite subset X of G \ 1 such that

1n HnNX#08

for all g € G. We have H; # G, and so we may assume that X ¢ H;. Since G is

simple, there exist elements ¢y,... ¢, € G such that
(H,X) < (M%,..., M%) =1L.

By Corollary A3, there exists a subgroup D of G such that (H,¢1,...,9.) < D,
and D can be viewed as a linear group with H; as a closed subgroup. We have
H <H\NL < L,and (H,X) < L. Since L is generated by infinite simple groups,
it is connected under any representation as a linear group. Also, thinking of L as
a linear group under the new embedding of D, Hy N L is a proper closed subgroup
of L. Finally, the core J of Hi N L in L is trivial. For otherwise, it either contains
M or centralizes it. In the first case we find that X normalizes M, contrary to
assumption, and in the second, since M is dense in G, we find that J is central
in G and so is trivial. Thus, Lemma 6.4 tells us that H; N L is not confined in L.
By Lemma 6.1 (i), H is also not confined in L. Therefore, as X C L, there exists
g € L such that H9 N X = @, contrary to (17) above. This establishes Theorem
B.
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